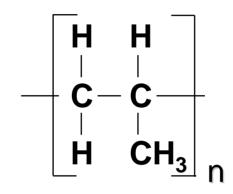


Technische Informationen

Für
Sanitär- und
Heizungsinstallationen
aus PP-R

Anwendungsgebiete

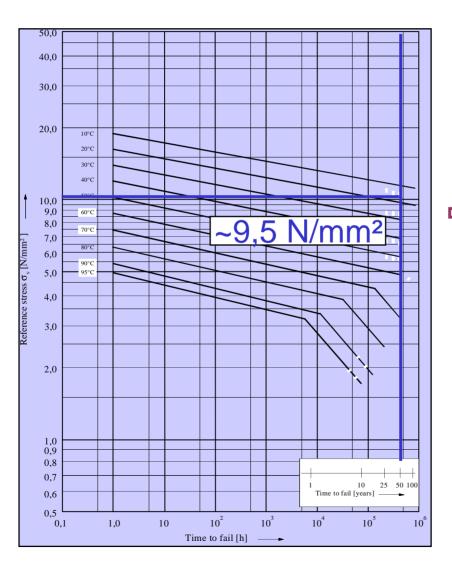
- Kalt- und Warmwassersysteme
- Heizungsinstallationen
- Produktionsleitungen für den Transport von aggressiven Medien (Krankenhäuser, Heilbäder, ...)
- Kaltwasserversorgung für Klimaanlagen und Industriesysteme
- Wasseraufbereitungsanlagen
- Feuerlöschleitungen
- Rohrleitungen für Wasch- und Reinigungsanlagen


Nennweite DN	Nennmaß mm	Innen- Durchmesser	Rohrgewicht kg/m
DN 12	20 x 3,4	13,2	0,172
DN 15	25 x 4,2	16,6	0,266
DN 20	32 x 5,4	21,2	0,461
DN 25	40 x 6,7	26,6	0,675
DN 32	50 x 8,3	33,2	1,027
DN 40	63 x 10,5	42,0	1,7
DN 50	75 x 12,5	50,0	2,5
-	90 x 15,0	60,0	3,3
DN 65	110 x 18,3	73,2	5,04
DN 80	125 x 20,8	83,2	6,49

Material

Standard PP (Polypropylen)

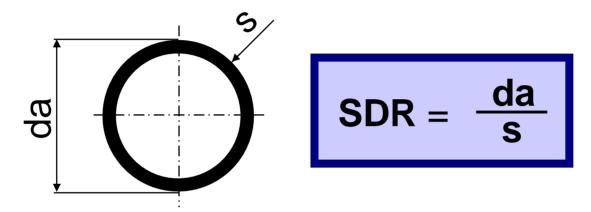
Betriebstemperatur:


PP-R 80 (Random-Copolymer)

Random-Copolymer der einen bestimmten Prozentsatz (2-7%) an Ethylen statistisch verteilt enthält.

Betriebstemperatur: - 5°C è + 95°C

Kriechkurve von PP-R 80:


Nächster Schritt = 8 N/mm²

minimum required strength für eine Betriebszeit von 50 Jahren und einer Temperatur von 20°C 8 N/mm² = MRS 8

⇒ PP-R 80

Berechnungsgrundlagen **SDR**

Beispiel:

da = 110mm

da

SDR ...Standard Dimension Ratio

...Aussendurchmesser [mm]

...Wanddicke [mm]

s = 18,3mm

SDR = ?

SDR =
$$\frac{da}{s}$$
 = $\frac{110}{18,3}$ = **6**

Berechnungsgrundlagen Betriebsdruck

$$p_{zul} = \frac{20 \text{ MRS}}{(SDR - 1) \cdot c_{min}}$$

p_{zul} ...zulässiger Betriebsdruck [bar]

MRS ...Minimum Required Strength [N/mm²]

SDR ...Standard Dimension Ratio

C_{min} ...Sicherheitsfaktor (=1,25 acc. ISO 12162)

Berechnungsgrundlagen Betriebsdruck

Beispiel:

PPR à MRS = 8 N/mm²

SDR 6

$$c_{min} = 1.6$$

$$p_{zul} = ?$$

$$p_{zul} = \frac{20 \text{ . MRS}}{(SDR - 1) \cdot c_{min}} = \frac{20 \cdot 8}{(6 - 1) \cdot 1,6} = \frac{20 \text{ bar}}{}$$

Maximale Betriebsdrücke für SDR6-PN20 Rohrsysteme

Betriebs- temperatur °C	Betriebs- dauer Jahre	zulässiger Betriebs- druck bar
20	50	20,4
30	50	17,3
40	50	14,5
50	50	12,2
60	50	10,1
70	25	8,0
80	25	5,1
95	10	3,4

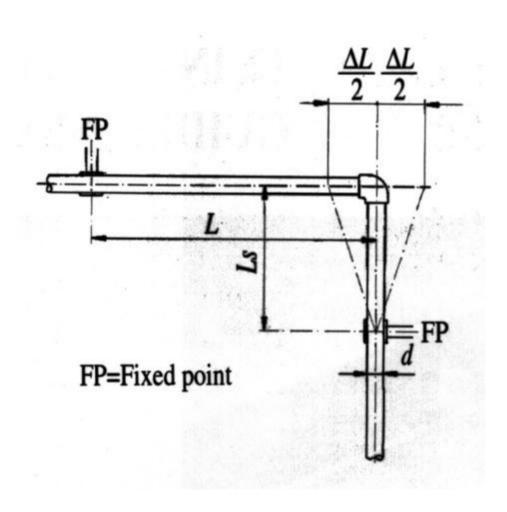
Wärmeausdehnung

$$\Delta L = a \times \Delta T \times L$$

 ΔL ...Längenänderung (mm)

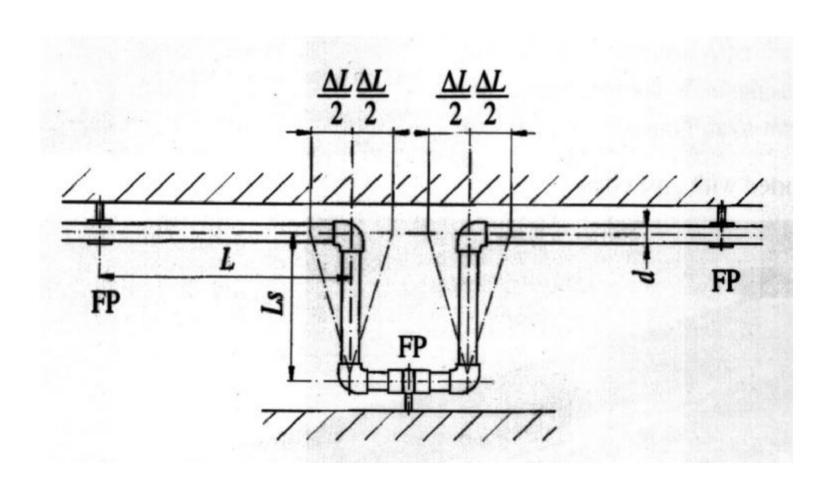
a ...Ausdehnungskoeffizient von PP= 0,15 mm/(m.K)

 ΔT ...Temperaturdifferenz (°K)

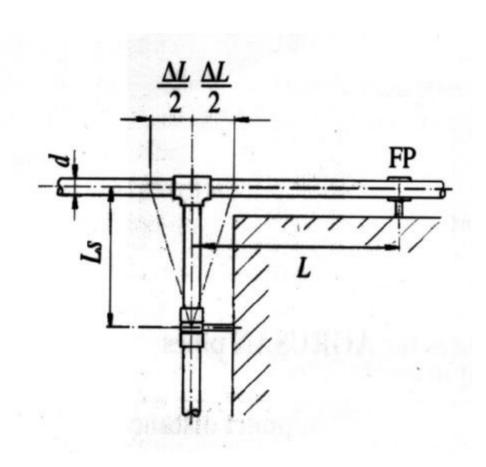

L ...Rohrlänge (m)

Beispiel: $\Delta T = 60^{\circ}\text{C}$ L = 10m

 $\Delta L = 0.15 \times 60 \times 10 = 90 \text{ mm}$



VERLEGUNG



VERLEGUNG

VERLEGUNG

Installationsrichtlinien

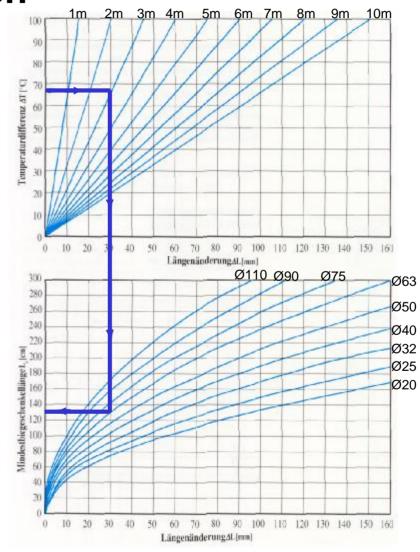
Tabelle mit Mindestbiegeschenkellängen Ls

Beispiel:

Temperaturdifferenz (Betriebsund Verlegetemperatur)

ΔT: 67°C

Länge des Rohres: L = 3 m


Theoretische Längenausdehnung:

ΔL: 30,0mm

Rohrdurchmesser: Ø63 mm

è Mindestbiegeschenkellänge:

Ls = 132 cm

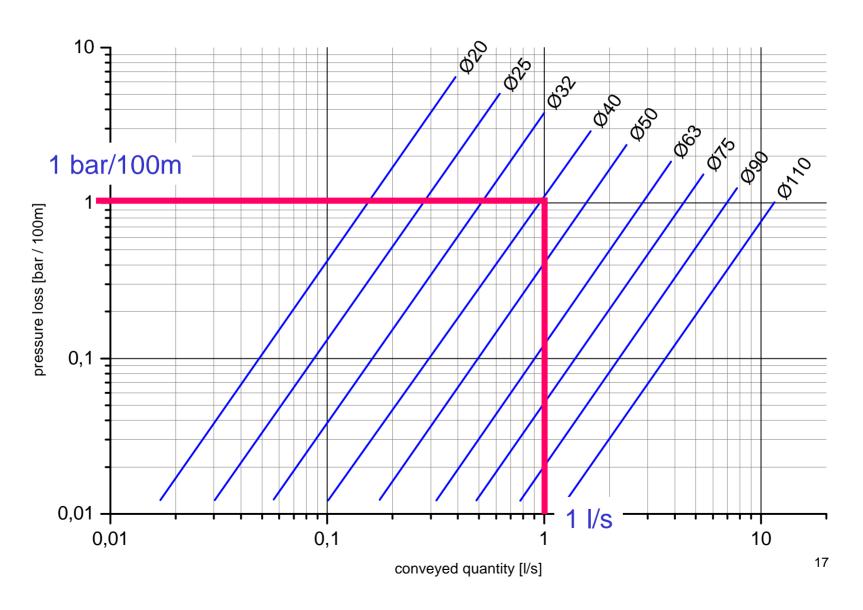
Installationsrichtlinien

OD	Stueztweiten L in [mm]			
[mm]	20°C*	40°C*	60°C*	70°C*
20	600	550	510	490
25	680	640	600	570
32	810	770	720	680
40	940	890	810	790
50	1060	1020	940	890
63	1230	1190	1110	1060
75	1320	1230	1150	1110
90	1400	1320	1230	1190
110	1570	1490	1360	1280

^{* ...}Betriebstemperatur

Ermittlung der Rohrnennweite

$$ID = 20 \times \sqrt{\frac{10 \times Q}{p \times v}}$$


ID = erforderlicher Innendruchmesser des Rohres (mm)

Q = Fördermenge (dm³/s)

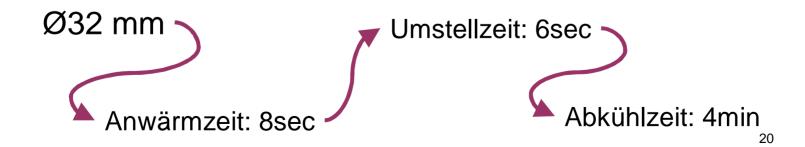
v = Fließgeschwindigkeit (m/s)

Druckverlust

Chemische Beständigkeit von PP-R

- Wässrige Lösungen von Säuren
- Laugen
- Salze
- große Zahl organischer Lösungsmittel
- Aromatische und chlorierte Kohlenwasserstoffe

Schweissrichtlinien (Verbindungsmöglichkeiten)


Dimensionsbereiche	\$20 \ 63°	mm 075-90mm
Heizelement - Muffenschweissur	ng 🧹	
Elektro - Muffenschweissung	4	
Flanschverbindungen	4	
Verschraubung	4	
Gewindeverbindungen	4	

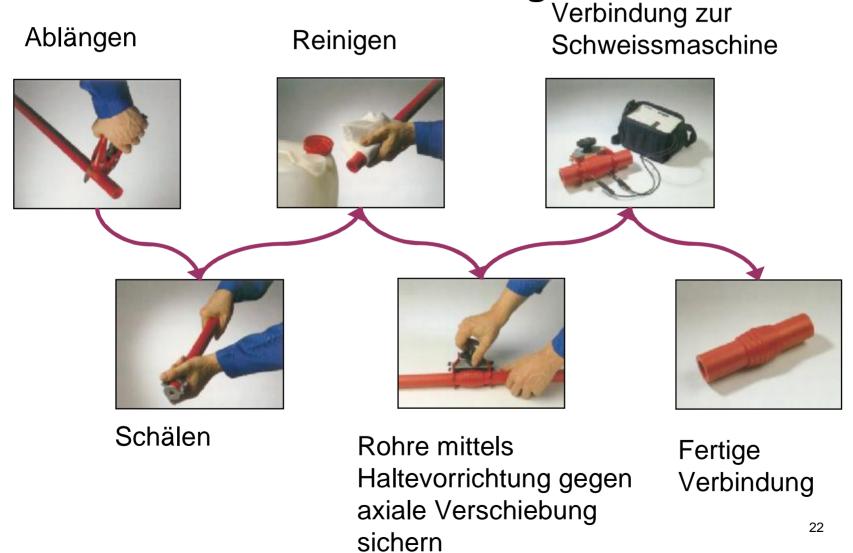
Heizelement - Muffenschweissung

Schweisstemperatur (T) PP - R: 250 - 270 °C

Beispiel für Schweissparameter

Heizelement - Muffenschweissung

Vorgehensweise für Handschweissung



Elektromuffenschweissung

